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Variational principles yielding upper and lower bounds on transport coefficients can 
readily be applied to the Boltzmann equation, provided it has the form of a linear, 
inhomogeneous integrodifferential equation with a Hermitian operator acting on the 
deviation from equilibrium of the distribution function. In transport problems involving 
a magnetic field or an alternating electric field, this operator is non-Hermitian. By 
suitably transforming the transport equation, we show how variational principles may 
still give upper and lower bounds. The bounds are used for considering the frequency- 
dependent conductivity associated with a general scattering operator, and the longi- 
tudinal magnetoresistivity in the relaxation time approximation for the scattering 
operator. Explicit results are presented for (1) the frequency-dependent conductivity 
of a charged Fermi liquid and (2) the longitudinal magnetoresistivity for a weakly 
anisotropic Fermi surface. 

KEY W O R D S :  Boltzmann equation; variational principles; upper and lower bounds; 
transport coefficient; Fermi liquid; frequency-dependent conductivity; magnetoresis- 
tivity; Fermi surface. 

I .  I N T R O D U C T I O N  

It is well known that the Boltzmann equation in general is a complicated integro- 
differential equation which cannot be solved directly for the distribution function. 
One frequently resorts to the use of a variational principle first introduced in transport 
theory by Kohler (see Ziman(1)). If  the operator acting on the deviation from 
equilibrium is Hermitian and positive, this principle yields a lower bound on such 
transport coefficients as electrical and thermal conductivity. 
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Recently, Jensen et aL ~2) discussed various other bounds on such transport 
coefficients and demonstrated how a variety of lower and upper bounds may be 
generated starting from Kohler's lower bound. The operator in the Boltzmann 
equation was there also assumed to be Hermitian and positive. 

In the present work, we devote our attention to the existence and use of  upper 
and lower bounds in situations where the operator in the Boltzmann equation is not  

Hermitian. Such situations cover a range of physically interesting problems, like 
transport in the presence of a magnetic field or an alternating electric field. 

It has been shown by several authors (1,3-6) that Kohler's variational principle 
can be generalized to such cases, but although the variational functional is stationary 
at the exact solution, it has in general neither a minimum nor a maximum, and there- 
fore the method does not provide bounds on the transport coefficient. Bailyn ~8) 
studied the case with a magnetic field present and obtained a variational principle 
giving a lower bound on that part of the conductivity tensor that is even in the 
magnetic field. 

In the present paper, we consider a quite general Boltzmann equation with a 
non-Hermitian operator and show that it is possible to obtain variational principles 
giving both lower and upper bounds on certain quantities related to the transport 
coefficients of interest (Section 2). 

Various choices of trial functions give upper and lower bounds on the frequency- 
dependent conductivity associated with a general scattering operator. The bounds 
can also be used for calculating the (longitudinal) magnetoresistivity of a metal, 
in which the scattering of electrons can be described by a relaxation time (Section 3). 
The frequency-dependent conductivity of a charged Fermi liquid, in which collisions 
between the quasiparticles themselves determine the scattering operator, is considered 
in Section 4, and it is shown that the upper and lower bounds determine the exact 
conductivity very well. Finally, bounds are calculated for the longitudinal magneto- 
resistivity of a metal with a weakly anisotropic Fermi surface (Section 5). Here, 
the upper and lower bounds turn out to be identical at all values of the magnetic 
field to second order in the anisotropy parameters. 

2. T H E  V A R I A T I O N A L  P R I N C I P L E S  

Our concern in the present paper is with the solution of linear, inhomogeneous 
integrodifferential equations which we symbolically write as 

H Q  = X (1) 

Here, Q is an unknown function of a variable vector k, X is the inhomogeneous term, 
and H a linear integrodifferential operator. The physical application we shall have 
in mind is the calculation of transport coefficients from a linearized Boltzmann 
equation. Rather than seeking the exact solution Q of (1), we are therefore interested 
in a certain scalar product of Q and X denoted by 

T = (Q*, .70 (2) 
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In the application to the Boltzmann equation, the scalar product is the transport 
coefficient associated with the driving term X. 

The convention we use for a scalar product of two functions U(k) and V(k) is 

(U*, V) = f dk U*(k) V(k) w(k) (3) 

where w(k) is a real, positive weight factor to be specified in each case. 
It is well known (see Ziman (1)) that if H is Hermitian, that is, if  (U*, HV)  = 

(V*, HU)*, and also positive in the sense of having only nonnegative eigenvalues, 
then T may be bounded from below according to 

T = (Q*, X) ~ [Re(U*, X)]2/(U *, HU)  (4) 

Here, U is an arbitrary trial function. 
If  was shown by Jensen et al. (3) that if H can be separated into two positive 

Hermitian operators J and L, i.e., 

= d + L (5) 

then T may be bounded from above as well, provided either J or L has an inverse. 
If, say, y-x exists, this upper bound is 

T = (Q*, X)  <~ (X*, j -1X)  - -  {Re[U*, (HJ  -1 -- 1)X]} 2 
(U*, (HJ  -z -- 1) HU) (6) 

In the work of Jensen et al., ~ the attention was confined to real and symmetrical 
operators H as well as real X, but the extension to (4) and (6) is straightforward. 

We shall now show how we may obtain bounds on the scalar product T if H 
is non-Hermitian. We first observe that the linear operator H can always be written 
as the sum of a Hermitian part G and an anti-Hermitian part A. The fundamental 
equation (1) becomes therefore 

(G § A)Q = X (7) 

We now define Q+ by the equation 

( G - -  A)Q + =  X (8) 

and introduce the functions 

f = (1/2)(Q -k Q+), g = (l/2i)(Q - Q+) (9) 

By adding and subtracting (7) and (8), we get two equations f o r f a n d  g, from which 
we can eliminate g if G -1 exists. The result is a single equation for f ,  2 

(G + iAG- l iA) f  = X (10) 

Such an equation has previously been derived by Bailyn. c6) See his Eq. (3.1b). 
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Similarly, if A -1 exists, we can obtain an equation for g: 

[iA + G(iA)-IGlg = X (11) 

From (10), we can get lower and upper bounds on the real quantity ( f* ,  X) = 
Re(Q*, X), provided G is positive. The positiveness of G and the existence of G -1 
ensures that the operator acting o n f i s  the sum of two Hermitian, positive operators, 
in which case (4) and (6) apply. (In order to prove that iAG-IiA is positive, we only 
use that A is anti-Hermitian together with the fact that G -1 is positive when G is). 

In the same manner, we can obtain lower and upper bounds on the real quantity 
(g*, X) = Im(Q*, X), provided iA is positive and possesses an inverse. 

3. A P P L I C A T I O N  OF T H E  V A R I A T I O N A L  PRINCIPLES 

The general variational principles discussed in the previous section are now 
applied to the calculation of transport coefficients arising from a linearized Boltzmann 
equation. We shall identify the Hermitian and positive collision operator with the 
Hermitian part G of the total operator that acts on the deviation from equilibrium Q. 
The anti-Hermitian part A is due to a magnetic field or an alternating electric field 
in the examples below. The usefulness of the bounds (4) and (6) obviously depends 
upon whether G or A (or both) may be inverted in practice. 

We have studied two types of problems with the aid of the variational methods. 
In the present section, we discuss these in a general framework, whereas the next 
two sections contain specific applications. 

3.1. Frequency-Dependent Conductivity 

The first type of transport coefficient is the frequency-dependent conductivity 
in the region where the photon energy h~o is much less than kT, i.e., Boltzmann's 
constant times the temperature. The Boltzmann equation is 

(G + io~)Q • X (12) 

Here, G is the collision operator, Q the deviation from equilibrium of the distribution 
function, and X is the driving term, which is proportional to the component of the 
velocity of a charge carrier along the direction of the electric field. The i~o term in (12) 
comes from the partial time derivative O/~t in the Boltzmann equation. 

The form of the Boltzmann equation (12) is restricted in two respects: (a) The 
collision integral is assumed not to depend explicitly on the frequency of the electric 
field. This is correct if the photon energy is much less than a typical energy transfer 
in a collision, i.e., boo ~ kT. In the case hw >~ kT, the collision integral should be 
modified ~7) in order to account for energy conservation in emission and absorption 
of photons during a collision. (b) Spatial homogeneity is assumed throughout. 
For  electrons in a metal, this requires that we consider only long-wavelength distur- 
bances satisfying q ~ eo/vv, where q is a characteristic wave vector and vF is the 
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Fermi velocity. In that case, we may neglect the term in the Boltzmann equation 
that takes into account spatial variation. 

For  simplicity, we assume in the following that G and X are real. 
From (7) and (8), we then deduce that Q+ = Q*, which according to (9) means 

that 

f =  R e Q ,  g = I m Q  (13) 

The conductivity can be written as 

(z = (Q*, x )  = art + icq (14) 

with the real part  

and the imaginary part  

~ .  = ( f ,  x )  (15) 

(3" I = - - ( g ,  X )  (16)  

From (10) and (11) with A = leo, we obtain bounds on cr R and gl by using (4) and (6). 
The separation (5) may be done in two different ways. To get upper bounds on aR 
from (10) and (6), we may either identify J with G or with co2G -1, whereas upper 
bounds on cq are obtained from (11) and (6) with the choice J ---= co or J = o71G 2. 

I f  we choose our trial functions U among the set of  functions GnX obtained 
from X by operating with G a total of  n times, then the bounds are determined by 
the matrix elements an defined by 

an = (X, G'~X) (17) 

These matrix elements satisfy a Schwarz inequality 

2 (18) aman ~ a(m+n)/2 

since G is positive. 
It  is advantageous to use trial functions which are variable linear combinations 

of  two functions from the set GnX. For convenience, we write these in the form 

U = p G ~ X  + e(1 --  p)  G'~X (19) 

where p is the variational parameter, while c is a constant introduced in order to 
facilitate the calculations. In fact, without loss of  generality, e can be chosen such that 
the numerators in (4) and (6) become independent of  the variational parameter  p. 
Then, the dependence of (4) and (6) on p is contained solely in the denominators, 
which become quadratic forms in p and are readily minimized with respect to variation 
o f p  to give the maximum lower and minimum upper bounds. 

For future use, we state below such upper and lower bounds on (r R and (r~ 
together with the trial functions in question. It  is convenient to write the lower (upper) 
bound on (~R as an upper (lower) bound on 1/~r R . In order to get the correct asymptotic 
behaviour of  the bounds at high frequencies, we have in all cases used GX as one of 
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the functions in the linear combination (19), since f =  m - 2 G X  is the asymptotic 
solution of (10), when A = io). The bounds listed below are not the simplest we can 
obtain, but they turn out to be the best ones for determining the frequency-dependent 
conductivity of a Fermi liquid (Section 4). We get, after straightforward algebraic 
manipulations, 

1_!_ <~ _ _  aa co 2 ~176 + (alb~l/a3b~ (20) 
crn az az ~ -t- [(al z q- ao2az 2aoaza2)/azbol] 

[from (4) with U = p X  -I- c(1 - -  p )  G X  and c = ao/az] and 

co 2 a8 co 2 "-t- (azbzJazbl~) (21) 1 - ! - ) - - + - -  ~o~ 
crn al al 2 -I- (a-zbzJalbl~) 

[from (6) with U = p G - Z X  + c(1 -- p) GXand c : az/aa ; we have chosen J = ~o~G-~). 
Here, b~,~ is defined as 

brim = a~+~a~_m --  a~ ~ (22) 

Note that b,~ >~ 0 due to the Schwarz inequality (18). Upon comparison of (10) 
and (11), it follows that similar bounds on co/~ri may be obtained with trial functions 
constructed from those above by operating with G -1. The prescription for deriving 
these bounds from (20) and (21) is in fact simply to change am to a,_z everywhere 
(thus, az --+ a0 and be1 "--9" bxl) and replace l/or n by ~o/cq. 

In specific applications; it may not always be possible to calculate all the matrix 
elements a_~ to a5 which go into these bounds. In such cases, one might use simpler 
bounds obtained with U = G~X. 

The asymptotic (co -+ ~ )  value of the bounds (20) and (21) agree to order co ~ so 

1/~R = (co~/aO + (a~/a~ 2) + O(~o -~) (23) 

with a similar expression for o)/cq. 
I f  x is an eigenvector of G with eigenvalue 1/~-, that is, 

G X  = ( 1 / r ) X  (24) 

the bounds become equal, since aN = r-~ao and b ~  = 0. We then get the Drude-  
Lorentz result 

c~ = aR + icq = ao ~-/(1 -- i~or) (25) 

Generally, the exact aR varies between a_l (which is the dc conductivity obtained 
from the exact co = 0 solution f =  G-~X) and the asymptotic form (23) (note, 
however, that the condition hco >~ k T  must always be satisfied). We can write the 
exact aR in the form 

ao/uR = o~2~-~ + [1/~-2(~o)] (26) 

where -r~ = ao/al ,  T2(O)= a_z/ao, and ~-2(ov)= a12/aoa3. It follows from repeated 
application of the Schwarz inequality (18) that ~-~(~) ~ ~'~ ~ ~-2(0). One can easily 
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prove that the function 1/~-2(w) is monotonically increasing with increasing co and 
has downward curvature when plotted versus co2. The latter property follows from 
consideration of the upper bound on l/erR obtained from (4) with a trial function 
equal to the exact solution of (10) at some frequency col. In a plot of 1/aR VS. cos 
such an upper bound is a straight line tangential to the exact 1/aR at co ----- col. It 
follows that the exact 1/aR curve must everywhere lie below its tangents and hence 
curve downward. The Drude-Lorentz result (25) can be characterized in this context 
as the limiting case ~-~(w) = "r 1 = ~. 

3.2. Longi tudina|  Magnetores is t iv i ty  

The second type of transport coefficient we have considered is the longitudinal 
magnetoresistivity of a closed, but otherwise arbitrary: Fermi surface of electrons. 
In terms of the magnetoconductivity tensor, this quantity is given by pz~ = 1/a~,  
if the electric field E, the current density J, and the magnetic field B all point in the 
z direction. More generally, bounds can be obtained on the symmetrical part of the 
magnetoconductivity tensor, but not on the antisymmetrical part (see below). 

From the outset, we limit ourselves to the relaxation-time approximation for 
the scattering operator, i.e., G -~ 1/-r. The form of the Bottzmann equation is then 

[(I/r) + coc(O/Oq~)] Q = X (27) 

where the magnetic operator has been given in the well-known form (see Ziman m) 
involving the cyclotron frequency co~(k~, e) for an orbit specified by the wave vector 
component k~ and the energy e, and the phase angle ~ whose time derivative equals 
coc. The standard definitions of ~ and co~ have been employed (see Appendix C). 
The magnetic operator can be shown to be anti-Hermitian, regardless of whether the 
Fermi surface is closed or not. 

As usual, Q is the deviation from equilibrium and X the (real) driving term 
proportional to the velocity component along the electric field. We consider electrons 
in a metal with a closed Fermi surface. Although the exact solution of the Boltzmann 
equation (27) can be written down formally (see Zimanm), the variational method 
may be helpful for the actual evaluation of the magnetoresistivity, as demonstrated 
for a particular Fermi surface in Section 5. 

In contrast to the previously discussed case of frequency-dependent conductivity, 
we can only get bounds on the real quantity ( f* ,  X) = (f,  X), since iA = icoo O/O(o 
has both positive and negative eigenvalues. Upon comparing (27) with (8), one 
observes that Q+ = Q ( - B ) .  The function fdef ined  by (9) is therefore the part of Q 
that is even in B. This means that bounds can be obtained for the symmetrical part of 
the conductivity tensor only. 

It is well known (see Ziman m) that the asymptotic (B ~ oo) solution of (27) is 

Q= ~- ~'X = ~'_~(k,, e) (28) 

where X means the average of X over the phase angle c~ around the orbit. In order 
to obtain bounds that interpolate between the zero-field resistivity and the asymptotic 
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value, we use as a trial function the variable linear combination [see the discussion 
following Eq. (19)] 

U = p X  + c(1 -- p ) X  (29) 

The equation (10) and the bounds (4) and (6) with J = 1/~- in the latter lead to the 
following bounds on ~ = (f,  X): 

0-1('rB)2 (30) 
0- >~ 0-0 - 1 + [0-~/(-o - 0 - ~ ) ] ( - B )  ~ 

and 

and 

0-1(rB) z 
0- <~ 0-0 - -  1 + (0-2/0-1)(rB) ~ 

We have introduced the positive quantities 

0-. = ~(-- 1)" (X, (oC e~/e~)-  x )  B - ' "  

( 3 1 )  

(32) 

0-o = ~'(X, X) = ~-(X, X) (33) 

The second equality in (33) follows from the fact that the volume element of integra- 
tion dk can be transformed to the product of the inverse of the cyclotron frequency 
o)~(kz, e) and dk~ dE d(o. Since the low-field expansion of 0- is 

0- = 0-0 -- 0-1(zB) ~ + ~2(fB)' -- 0-a(zB) 6 + -.. (34) 

we note that the upper bound (31) is exact to order B 4 and the lower one (30) to 
order B 2. Both bounds tend to a finite limiting value when B--+ m, the lower bound 
approaching the exact value cr~. The upper bound is independent of the coefficient 
of X in (29) and in general is not exact at high fields. In analogy with the discussion 
below Eq. (26), we can prove that the exact magnetoresistivity 1/0- is monotonically 
increasing with B and has downward curvature when plotted versus B ~. 

Upon comparison of the lower and upper bounds (30) and (31), we note that 
the following inequality must hold: 

0-2/0-1 ) 0-1/(O-o -- 0-~) (35) 

Like (18), this is simply a Schwarz inequality which may be derived by considering 
matrix elements of the form (32) with X replaced by (X -- X). The degree to which (35) 
is nearly an equality determines how close the bounds (30) and (31) lie to each other 
and hence to the exact conductivity. 

4. F R E Q U E N C Y - D E P E N D E N T  C O N D U C T I V I T Y  
OF A C H A R G E D  FERMI L I Q U I D  

As a specific application of the bounds on the frequency-dependent conductivity 
discussed in the previous section, we consider here the Boltzmann equation of a 
charged Fermi liquid at low temperature. The distribution function of the quasi- 
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particles is assumed to relax toward equilibrium due to collisions between the quasi- 
particles themselves. The transport equation is given below [Eq. (37)] in reduced 
form as a one-dimensional integral equation in the (reduced) energy variable 

s = (~ -- ~ ) / k T  (36) 

which measures energies from the Fermi energy/~. The essential steps in the reduction 
of the Boltzmann equation to the form (37) are discussed in Appendix A. The reduced 
Boltzmann equation is 

GO(s) § ff2O(s) = X(s) (37) 

Here, the unknown Q(s) is related to the deviation from equilibrium of the distribution 
function by Eq. (A7) of Appendix A. The inhomogeneous term is 

X(s) = 1/cosh(s/2) (38) 

whereas the reduced collision operator G is defined by ~2) 

GQ(s) = (re 2 + s 2) Q(s) 

-- -~ {[(s -- u)/2]/sinh[(s -- u)/2l} Q(u) du (39) 

The dimensionless constant D is proportional to the frequency w of the electric 
field, 

O = ~o-r e (40) 

where the constant of proportionality % is a characteristic time for the scattering of 
quasiparticles (electrons) against one another, 

l / r ,  = (1 + �89176 9)/cos(0/2)> (41) 

Here, the Fermi liquid parameter/718 and the effective mass m* are defined as by 
Pines and Nozi6resJ s) The scattering angles 0 and 9 and the collision probability 
w(O, cp) are those of Abrikosov and KhalatnikovJ ~) The bracket denotes an angular 
average. 

The dimensionless parameter a occurring in (39) is a ratio of two weighted 
angular averages of the collision probability w(O, 9) (see Appendix A for specific 
examples). 

The solution Q(s) of (37) determines a reduced conductivity Z given by the 
scalar product 

o~ 

Z ---- (Q*, X)  = f Q*(s) X(s) ds (42) 
r - - o o  

The actual conductivity cr is shown in Appendix A to be proportional to the complex 
conjugate Z*. It is 

cr • [ ( n e 2 / m o )  -re] 1Z*  (43) 
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Here, mo denotes the optical mass, defined as 

m o =  m*(1 + �89 -1 (44) 

In the static limit (D = 0), the solution Q~ of (37) when inserted in (42) gives 
a dc conductivity Z ~ equal to 

1 4 2n + 1 1 (45) 
Z~ = -3 + - ~  ~ n~(n + 1) 2 n(n + 1)--o~ 

n = 1 , 3  . . . .  

as shown by Jensen et al. (1~ (see also Brooker and Sykes(//)). 
The dc resistivity of  a pure, translationally invariant Fermi liquid is of course zero, 

since the collisions conserve the total momentum of the electrons. This is consistent 
with the fact that the parameter occurring in (39) is 2 in this case (cf. Appendix A), 
which results in all infinite ~0 according to (45). When the translational invariance 
is broken in various ways as discussed in Appendix A, the parameter o~ may be less 
than 2 and the dc conductivity finite. 

The operator G of (39) is positive, real, and symmetrical for c~ < 2, so the bounds 
on the conductivity derived in Section 3 apply immediately. The matrix elements a,, 
defined by (17) can be calculated in a straightforward fashion by Fourier transforma- 
tion of the kernel in (39). They are listed in Appendix B as functions of ~. 

The bounds on the real part ZR of the reduced conductivity Z are obtained 
from (20) and (21) by replacing CR and co with ZR and Q, respectively, and using the 
expressions in Appendix B for the matrix elements a s .  The bounds on the imaginary 
part  are obtained by the similar replacement ((h, co)--+ (ZI ,  ~ )  in the bounds on 
o~/cq derived according to the prescription below (22). The resulting bounds on Z are 
exhibited in Figs. 1 and 2 for the choice c~ = 1. That the upper and lower bounds lie 
very close is apparent from the blown-up section of Fig. 1. 

TX2Y 
Ct= 1 

3.o i 

Z~ .6 .7 

5 

.5 1 1.5 

Fig. 1. Each of the curves X R and 2/i has two close-lying curves, which are our best upper and 
lower bounds on the real and imaginary parts of the reduced conductivity 27 plotted versus the 
reduced frequency ~ defined by (40). The parameter a is chosen as 1. To exhibit the bounds, we have 
blown up a section, which is in the region of maximum relative difference between the upper and 
lower bounds. 
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ct3~ )-R al * 
CO= I 

.5 

I I 

lo 50 
- ~  (f~/rc2) 2 

Fig. 2. Upper and lower bounds on the inverse real part after subtraction of the term propor- 
tional to s9 ~ [cf. (20) and (21)]. The bounds are normalized so that they tend toward I in the limit 

-+ or. The Drude-Lorentz form (25) would correspond to a straight horizontal line at the top 
arrow to the left, The bottom arrow is the exact zero-frequency result. Note that the scale on the 
abscissa is different in Figs. 1 and 2. 

Our  final results for  the actual conductivity a = eR -}- krz are given below in a 
form analogous to (26): 

eR = (ne~/mo){eo2% -1- [1/'r2((-o)]} -1 (46) 

where 

T 1 = %(3/4~2)[1 - -  (~/2)]-z 

%(0) = %(a_~)/ao ~ %{(1/12) q- (3/4~2)[~/(2 - -  a)]} 

%(0o) = %(35/127r2)(8 - -  3~) -1 

(47) 

Note  that  r l  and %(0) become infinite at a = 2, whereas %(00) stays finite. The bounds  
on the variation o f  1/%(oJ) with frequency are essentially those exhibited in Fig. 2, 
since 1/%(o))as a function o f  co is proport ional  to the ordinate in Fig.  2, when use 
is made of  (40) in the latter. 

Similarly, we get for the imaginary part  

~1 = - - (ne2 /mo) (  ~~ q- [1/aJ%%(oJ)]} - I  (48) 

where expressions for  the exact values ra(0) and %(0o) can be obtained in terms of  
the an o f  Appendix B. However,  in this case, the variation o f  %(o J) with frequency 
is much less dramatic. When c~--+2, both  %(0) and %(00) become infinite. At  
high frequencies, (48) gives the well-known result ~i = --ne~/rno o) (see Pines and 
Nozi~res(S)). 
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5. L O N G I T U D I N A L  M A G N E T O R E S I S T I V I T Y  
FOR A W E A K L Y  A N I S O T R O P I C  FERHI  S U R F A C E  

Upper and lower bounds on the magnetoresistivity have been derived in Section 3 
and are given by (30) and (31). To examine these bounds, we evaluate ~0, crz, or2, 
and ~r~ defined in (32) and (33) for a metal in which the departure of the Fermi 
surface f rom sphericity is not too great. For this purpose, we consider a model Fermi 
surface in which the modulus of the k vector is expanded in terms of spherical 
harmonics of cubic symmetry as 

k(, ,  0, ~) = -o(,) + ~ ( , )  h ( cos  0, ~) (49) 

where ~o and oq are energy-dependent coefficients. Here, 

Y~(x, ~) = Pa(x) 4- Pa4(X)(COS 4q~)/168 

where the P 's  are Legendre functions, P4 = ( 35xa - -  30x2 4- 3)/8, Pa d = 105(1 - -  x2) 2. 
We have included only the two lowest-order harmonics. Note that the maximum 
value of Y4 is 1, so that ] cq(~)[ is the maximum perturbation of the sphere k = %(E). 

Both % and ~i have been calculated for this case by Davis a~) and our calculation 
confirms his results. Garcia-Moliner a3) has made use of Davis's calculations to 
discuss the magnetoresistance of alkali metals. ~r 2 has not, to our knowledge, been 
given for this model. I t  is only slightly more laborious to obtain. In Appendix C, 
we indicate how cr~o is evaluated, as this does not appear to have been calculated 
before for this particular model. 

We define a scalar product as 

( f ,  g) = (1/4~r z) f dk(--~no/~E)-Zf(k)g(k)  (50) 

where no is the Fermi distribution function. We furthermore define four parameters 

kF = %(tz) 1/hvr~ = %'(tz), 
(51) 

R = ~l(t0/~o(~), S = ~l'(t0/~o'(t0, 

with prime denoting differentiation with respect to E. Here, /z is the Fermi energy. 
In terms of these four parameters, we obtain the following results, to quadratic 
order in R and S: 

a o = (ne2T/m*)[1 + (4/21)(21R z - -  2 R S  + S2)] 

(r~ = (ne2r/m*)[1 + (1/231)(879R 2 - -  58RS + 39S2)] 

~rl(B~') 2 = (ne~r/m*)(coo'r) 2 (80 /231) (S-  3R) 2 

~r2(B7 ) '  = (ne%/m*)(coo.r)q6(80/231)(S-  3R)2 

where n = ki~Z/3~r 2, m* = hkF/vv,  and co o == eB/m*. 

(52) 
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In evaluating the integrals, we have, following Davis, assumed complete 
degeneracy for the integral over the energy and have neglected third and higher 
powers of R and S in the binomial expansions. We have found the magnitude 
of the coefficient of S ~ in ~o to be approximately half of that of S ~. Therefore, we 
believe that the contribution from the higher-order terms are negligible if R and S 
are of the order of 0.1 or less. This value of R corresponds to a maximum deviation 
of 10 ~ from sphericity. 

We now proceed to discuss the results given in (52). The absence of terms linear 
in R and S are in accord with the requirement that the magnetoresistivity should 
always be positive. As a further check on our results, we observe that a~ vanishes 
when S = 3R. From (30) and (31), it follows that when cq is zero then ~ = % at all 
fields, so that % -  q~ is identically zero. Consequently, ~ 0 -  cr~ must contain 
the factor ( S -  3R), and furthermore be proportional to ( S -  3R) z to satisfy the 
requirement of a positive magnetoresistivity. For  similar reasons, cr 2 has to be propor- 
tional to (S -- 3R)L 

With the values (52) put into the inequality (35), the latter turns out to be an 
equality. This shows that our upper and lower bounds are identical. The reason for 
this rather surprising result is that the Fourier expansion of the inhomogeneous term X 
in the phase-angle variable c} contains, apart from the constant term X, only a single 
Fourier component (to quadratic order in R and S). 

From (30), we derive an expression for the relative change in resistivity 
( P -  po)/Po, where P0 is the zero-field resistivity, since this is the quantity usually 
measured in practice. Using (52), we obtain 

(p - -  po)/po ---- (5/231)(S -- 3R) ~ {16(COoZ)~/[1 -? 16(WoT)21} (53) 

We note that the magnetoresistivity saturates when co0~- ~> 1. The saturation value is 
~-d0 -3 when R and S are ~ 1 0  -1. Furthermore, it vanishes when S = 3R. This ratio 
of R / S  follows if in (49) we have, for example, ~o(e) oc el/2 and ~I(E) oc e3/2. 

Since the deviations from sphericity in, for example, potassium are known ~1~ 
to be ~ 1 0  -3, the saturation value from (53) would thus be ~ 1 0  -7. This is several 
orders of magnitude less than the experimentally observed magnetoresistivity in 
potassium, a~) which clearly demonstrates the need for a mechanism other than 
ordinary impurity scattering to explain these results. 

A P P E N D I X  A 

The reduction of the Boltzmann equation of a charged Fermi liquid to a one- 
dimensional integral equation is briefly described in the following. It was performed 
in detail for the case of the (static) thermal conductivity in Appendix B of Jensen 
et al. (2~ Since the case of electrical conductivity is closely related, we limit ourselves 
to pointing out the differences. 

As mentioned in Section 3.1, we neglect any spatial dependence of  the distribution 
function. The oscillating field E = E 0 e "  causes the distribution function n to depend 
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explicitly on time. The kinetic equation for quasiparticles with momentum p and 
energy E is then 

(Sn/St)  + (--g~/Sx). en/~p = I(n) (A1) 

where I is the collision integral arising from scattering between the quasiparticles. 
Since we assume "classical" conditions hoJ ~ k T ,  the collision integral is independent 
of co (of. Section 3.1 and Gurzhi). (7) 

To linear order in E, the driving term of the Boltzmann equation (A1) is 

- a , / a x  �9 anlap = - [1/4 coshZ(s/Z)]( l lkT)  eE" v (A2) 

upon introduction of the velocity v = 0e/Sp and the reduced energy variable 

s = ( , -  ~ ) l kT  ( A 3 )  

As usual in Fermi liquid theory, one expands in the collision integral the distribution 
function about local equilibrium n0(e) according to 

n = no(,) + (ano/&) ~b,e '~ (A4) 

where no is the Fermi distribution function. 
However, the 8/8t operator of (A1) acts on the deviation from true equilibrium 

n0(E0) given by 

n - -  no(,o) = (eno/eO ~,e  i~~ (AS) 

In (A5), E o is the quasiparticle energy in the absence of any disturbance of the system 
= o). 
The connection between ~ and ~b is made in the usual manner (see, e.g., Pines 

and Nozi~res (8)) by observing that the angular dependence of the solution to (A1) 
is set by v �9 E. Then, ~ and ~ are simply related by the Landau parameter F1 ~ according 
to 

~ = ~bp(1 + �89 -1 (A6) 

and the linearized equation (A1) may be written as an equation for the energy depen- 
dence of ~bp only. To achieve this, we follow the same steps as in Appendix B of 
Jensen et aL (2) after writing 

~bp = --5-0[cosh(s/2)] Q(s) v" E0e (A7) 

The Boltzmann equation then finally becomes 

{ico[5-o/(1 + �89 + G} O = X (A8) 

where G is the operator (39) and X is given by (38). The definition of T 0 in (A7) 
is that used by Jensen et al., (2) so the product 5-0(1 + �89 -1 is the characteristic 
time ~-~ defined by (41), which completes the identification of (AS) with (37). 

We still need to comment on the meaning of the parameter c~ in the integral 
operator (39). In a translationally invariant Fermi liquid, ~ is 2, and the dc conductivity 
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(45) is infinite. However, if the translational invariance is broken by the existence of 
Umklapp processes, an equation like (37) may still be obtained (18,17) with ~ less 
than 2. 

The translational invariance is also broken in the two-band model used by 
Bennett and Rice as) for the dc conductivity. There (light) s electrons are assumed 
to scatter against (heavy) d electrons taken to be in equilibrium. The Boltzmann 
equation (37) is then obtained with g? = 0 and ~ given by 

f = 2 J0 w(u)(1 --  2u 2) du w(u) du (A9) 

Here, the collision probability w(u) is expressed as a function of u = q/2ks, i.e., 
the ratio of the wave vector transfer q to twice the Fermi wave vector k, for the 
s electrons. The result (A9)holds when the Fermi wave vector ka of the d electrons 
is greater than k~. When this is not the case, the upper limits on the integrals are 
replaced by the ratio ka/ks. 

Finally, we must relate the conductivity e to the solution Q of (A8). The current 
density J is generally 

a = Z e(Seo/eP) 3n (A10) 
l l c r  

with 8n = (Sno/Oe)r ~'~ being the deviation from local equilibrium [see (A4)]. 
The index ~ denotes a spin sum. 

With the expression (A7) for ~b, the conductivity obtained from (A10) becomes 

a = e~(m*kF/rr2h2) 
CJO 

• ~. dS �89 Q(s) (Al l )  

in terms of the density of states rn*kv/~r2h 2 and the Fermi velocity vF. Defining 
X(s) = 1/cosh(s/2) in agreement with (38) and using vF = hkF/m* and the number of  
electrons per unit volume n = kF3/3,'v 2, we obtain 

= (ne2/m*)(.ro/2) j ds Q(s)X(s) (A12) ( Y  

- -  c t )  

The integral in (A12) is simply the complex conjugate of the reduced conductivity X 
defined by (42). In terms of the time ~-~ defined by (41) and the optical mass m0 defined 
by (44), the result (A12) is seen to be identical to (43). 

A P P E N D I X  B 

Below we list the matrix elements 

c o  

a .  = (x ,  c ' ~ x ) - -  
- - o o  

,is X(s) 6"X(s) 
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with X given by (38) and G by (39): 

a_2 = ~r-~{2.847 + 2.250[a2/(2 - -  c~) z] + 4.935[c~/(2 - -  ~)] 

+ 0.461[~/(12 - -  ~)1 + 0.292[~2/(2 - -  ~)(12 - -  ~)1 

+ 0.057[~x~/(12 - -  a) ~] + ..-} 

a_1 = S ~ given by (45) 

a 0 = 4  

al = 7r~(16/3)[1 - -  (~/2)] 

a2 = 7r'(128/15)[I - -  (e~/2)] ~ 

as = rr6(256/105)[1 - -  (~/2)]2(8 - -  3~) 

a4 = ws(2048/315)[1 - -  (~/2)] z (12 - -  6c~ + e~ 2) 

a5 = ~A~ - -  (~/2)] ~ (480 - -  228c~ + 50~ 2 - -  5~ g) 

The  matr ix  elements a_2 and a_~ are given in terms of rapidly converging series. 
The matr ix  element a_z = (G-~X, G-~X) is calculated by means  of  the solution Q0 
o f  0 7 )  with D = 0, since Q0 = G-~X. The solution QO is in turn readily obtained 
f rom Jensen et al/~~ as a rapidly converging series of  functions. 

A P P E N D I X  C 

We evaluate cr~ for  our  model  Fermi  surface given by (49). F r o m  (33) and our  
definition o f  a scalar product  (50), a~ becomes 

= ~'(--e2/47r 3) f (~no/~E) v ~ k  2 sin 0 dk dO d~ (C1) (7o0 

where 

v~ = (Sk/~,) -1 {cos 0 + [(sin O)/k] Ok/OO} (C2) 

and g~ is the average velocity in the direction of  the magnetic field, the average being 
over  an orbit  on the Fermi  surface with respect to the phase angle ~, 

27 = (1/2~r) f f~ f v, d~ v~(d~/d~) d~ (C3) (1/2.) 
0 0 

T o  evaluate d~/d% we use the definition (see for  example,  Ziman,  m pp. 513-515) 

(c@ 

The line integral is over  an orbit  on the Fermi  surface in a plane of  constant  k~ and 

dl = k(sin O) d@cos ~b (C5) 
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is the element arc on this orbit. Here, ~b is the angle between the components in the 
plane of the orbit of the velocity and the wave vector. With (C5) in (C4) and the 
obvious expressions for the velocity and wave vector in spherical polar coordinates, 
we obtain 

dc~/dso = D/[(1/2zr) f:'~O d~] (C6) 

where 
{ Dk ] [ t cos 0 Ok~SO ]-1 

"(2 = 1T~-E ] I t  k sin 0 k " 

Equation (C3) implies an integration in which k~ and e are constant. In carrying 
out the integration over q~ of functions of k and 0, we have to take into account the 
fact that k and 0 vary on the orbit defined by k~ and e. We need, therefore, to determine 
the dependence of 0 and k on k~, e, and ~ from the two equations 

k~ = k cos 0 
(C7) 

k = kv[1 -+- RY4(cos 0, q0] 

Equation (C7) is obtained from (49) with E = / z  using (51). As always, we assume 
complete degeneracy. We solve for 0 and k by iteration starting with R = 0, k = kF,  
and cos 0o = kJkv. To first order, we get 

cos 01 = (cos 0o)[1 - RY(cos 0o, ~)] 

and to second order, 

cos 02 - (cos 0o)[1 - RY(cos 01, ~) + R~Y~(cos 0o, ~)] 

(c8) 

(C9) 

(The subscript in Y4 is hereafter suppressed.) We now expand Y as a Taylor expansion 
and, using (C8) and (C9), we obtain to second order 

(C10) 

( C l l )  

cos 0 = (cos 0o){1 - RYo + R~[Yo ~ + (cos 0o) roYo']} 

k = kF[1 + RYo - -  R2(cos 0o) roYo'] 

where Y0' = ~ Yo/~( cos 00) and for brevity we write u -- Y(cos 00, q)). 
To evaluate d(v/dcp from (C6), we first substitute for k, k -1 ~k/OO from (C7) and 

~k/OE from (49) and (51). We then carry out a binomial expansion in powers of R and 
neglect third and higher powers. Prior to carrying out the integration over % we 
convert all functions of 0 to functions of 00 with the use of (C10), (CI 1), and other 
relations easily derived from them. The series obtained for d(o/dq~ is then inserted 
into (C3) to calculate f~. The same procedure for expansion and conversion to 
functions of 0o, where necessary, is carried out before integration. We can now 
evaluate ~ from (C1) after inserting the result obtained for ~, and carrying out 
expansions in powers of R and S as before. As a final step before performing the 
integration over 0 and % we convert all functions of 00 back to functions of 0 using 
(C10). All integrations are carried out analytically. Those involving products of 
Legendre polynomials can be carried out using the formulas given by Gaunt. (19~ 

822/3/I-3 
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